Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 7 - Section 7.3 - Trigonometric Substitution - 7.3 Exercises - Page 505: 1

Answer

$$\int \frac{dx}{x^{2}\sqrt{4-x^{2}}}=-\frac{\sqrt{4-x^{2}}}{4x}+C$$

Work Step by Step

$$Let\ x=2sin\,u,dx=2cos\,u\,du,cot\,u=\frac{\sqrt{4-x^{2}}}{x}$$ $$\int \frac{dx}{x^{2}\sqrt{4-x^{2}}}=\int \frac{2cos\,u\,du}{(2sin\,u)^{2}\sqrt{4-(2sin\,u)^{2}}}$$ $$=\int \frac{cos\,u}{4sin^{2}u\,cos\,u}\,du=\frac{1}{4}\int csc^{2}u\,du$$ $$=-\frac{1}{4}cot\,u+C=-\frac{\sqrt{4-x^{2}}}{4x}+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.