Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Review - Exercises - Page 430: 50

Answer

a) $0$ b) $0$

Work Step by Step

Recall: If $f(x)$ is above (or below) the $x-$axis for $a\leq x\leq b$ and $A$ is the area bounded by the curve of $f$ and the $x-axis$ for $a\leq x\leq b$, then $A=\int_a^bf(x) dx$ (or $A=-\int_a^b f(x)dx$). Using this knowledge above, we have $\int_1^3f(x) dx=A$, $\int_3^4f(x)dx=-B$, and $\int_4^5 f(x)dx=C$. Part a) Using the properties for integrals, $\int_1^4f(x)dx+\int_3^5 f(x)dx =(\int_1^3f(x)dx+\int_3^4f(x)dx)+(\int_3^4f(x)dx+\int_4^5f(x)dx)=(A+(-B))+((-B)+C)=(3+(-2))+(-2+1)=1+(-1)=0$ Part b) Using the properties for integrals, $\int_1^32f(x)dx+\int_3^56f(x)dx=2\int_1^3f(x)dx+6\int_3^5f(x)dx=2A+6(\int_3^4f(x)dx+\int_4^5f(x)dx)=2A+6((-B)+C)=2\cdot 3+6(-2+1)=6-6=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.