Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Review - Exercises - Page 430: 39

Answer

$\frac{{3{{\left( {1 - x} \right)}^{8/3}}}}{8} - \frac{{3{{\left( {1 - x} \right)}^{5/3}}}}{5} + C$

Work Step by Step

$$\eqalign{ & \int {x{{\left( {1 - x} \right)}^{2/3}}} dx \cr & {\text{Integrate by the substitution method}} \cr & {\text{Let }}u = 1 - x,{\text{ }}x = 1 - u,{\text{ then }}dx = - du \cr & {\text{Applying the substitution}} \cr & \int {x{{\left( {1 - x} \right)}^{2/3}}} dx = \int {\left( {1 - u} \right){u^{2/3}}\left( { - 1} \right)} du \cr & = \int {\left( {u - 1} \right){u^{2/3}}} du \cr & = \int {\left( {{u^{5/3}} - {u^{2/3}}} \right)} du \cr & {\text{Integrate }} \cr & = \frac{{{u^{8/3}}}}{{8/3}} - \frac{{{u^{5/3}}}}{{5/3}} + C \cr & = \frac{{3{u^{8/3}}}}{8} - \frac{{3{u^{5/3}}}}{5} + C \cr & {\text{Write in terms of }}x,{\text{ substitute }}1 - x{\text{ for }}u \cr & = \frac{{3{{\left( {1 - x} \right)}^{8/3}}}}{8} - \frac{{3{{\left( {1 - x} \right)}^{5/3}}}}{5} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.