Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Review - Exercises - Page 430: 43

Answer

$$ \int \frac{\cos x}{\sqrt {1+\sin x}} d x= 2 (1+\sin x)^{\frac{1}{2}}+C $$

Work Step by Step

$$ \int \frac{\cos x}{\sqrt {1+\sin x}} d x $$ Let $ u=1+\sin x $. Then $ du= \cos x dx $, so $$ \begin{split} \int \frac{\cos x}{\sqrt {1+\sin x}} d x & =\int u^{-\frac{1}{2}}d u \\ & =2 u^{\frac{1}{2}}+C \\ & =2 (1+\sin x)^{\frac{1}{2}}+C. \end{split} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.