Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 5 - Review - Exercises - Page 430: 42

Answer

$\int_{0}^{4} \vert \sqrt{x}-1 \vert~dx = 2$

Work Step by Step

Note that the function $~~\sqrt{x}-1~~$ is negative on the interval $0 \leq x \lt 1$ We can evaluate the integral: $\int_{0}^{4} \vert \sqrt{x}-1 \vert~dx$ $= \int_{0}^{1} (1-\sqrt{x})~dx+\int_{1}^{4} (\sqrt{x}-1)~dx$ $= (x-\frac{2~x^{3/2}}{3})~\vert_{0}^{1}+ (\frac{2~x^{3/2}}{3}-x)~\vert_{1}^{4}$ $= [(1)-\frac{2(1)^{3/2}}{3}] - [(0)-\frac{2~(0)^{3/2}}{3}]+ [\frac{2~(4)^{3/2}}{3}-(4)] - [\frac{2~(1)^{3/2}}{3}-(1)]$ $= (1-\frac{2}{3})-(0)+ (\frac{16}{3}-4) - (\frac{2}{3}-1)$ $= \frac{1}{3}+\frac{4}{3} +\frac{1}{3}$ $= 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.