Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 4 - Section 4.9 - Antiderivatives - 4.9 Exercises - Page 362: 33

Answer

$f(x)=\displaystyle \frac{1}{3}x^3+3e^{x}+Cx+D$

Work Step by Step

$\left[\begin{array}{cc} \text{}f'' & \text{particular antiderivative,}f'\\ 2x^{1} & 2\cdot\dfrac{x^{2}}{2}=x^{2} \\ 3e^{x} & 3\cdot e^{x} \end{array}\right]$ $f'(x)=x^{2}+3e^{x}+C$ $\left[\begin{array}{cc} \text{}f' & \text{particular antiderivative,}f\\ x^{2} & \dfrac{x^{3}}{3}\\ 3e^{x} & 3\cdot e^{x} \\ C & Cx \end{array}\right]$ $f(x)=\displaystyle \frac{1}{3}x^3+3e^{x}+Cx+D$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.