Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 4 - Section 4.9 - Antiderivatives - 4.9 Exercises - Page 362: 19

Answer

$G\left( t \right) = 7{e^t} - {e^3}t + C$

Work Step by Step

$$\eqalign{ & g\left( t \right) = 7{e^t} - {e^3} \cr & {\text{Using the formulas in Table 2 }}\left( {{\text{see page 358}}} \right){\text{ }} \cr & {\text{Function: }}cf\left( x \right) \to {\text{Particular antiderivative: }}cF\left( x \right) \cr & {\text{Function: }}{e^x} \to {\text{Particular antiderivative: }}{e^x} \cr & {\text{Function: }}f\left( x \right) + h\left( x \right) \to {\text{Particular antiderivative: }}f\left( x \right) + h\left( x \right) \cr & {\text{And applying the Theorem 1}},{\text{ we obtain}} \cr & G\left( t \right) = 7{e^t} - {e^3}t + C \cr & \cr & {\text{Checking the answer by differentiation}} \cr & G'\left( t \right) = \frac{d}{{dt}}\left[ {7{e^t}} \right] - \frac{d}{{dt}}\left[ {{e^3}t} \right] + \frac{d}{{dt}}\left[ C \right] \cr & G'\left( t \right) = 7{e^t} - {e^3} + 0 \cr & G'\left( t \right) = 7{e^t} - {e^3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.