Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 4 - Section 4.9 - Antiderivatives - 4.9 Exercises - Page 362: 29

Answer

$f\left( x \right) = 4{x^3} + {C_1}x + {C_2}$

Work Step by Step

$$\eqalign{ & f''\left( x \right) = 24x \cr & {\text{Find the general antiderivative }}f'\left( x \right) \cr & {\text{Using the formulas in Table 2 }}\left( {{\text{see page 358}}} \right) \cr & {\text{Function: }}cf\left( x \right) \to {\text{Particular antiderivative: }}cF\left( x \right) \cr & {\text{Function: }}{x^n}\left( {n \ne - 1} \right) \to {\text{Particular antiderivative: }}\frac{{{x^{n + 1}}}}{{n + 1}} \cr & {\text{we obtain}} \cr & f'\left( x \right) = 24\left( {\frac{{{x^2}}}{2}} \right) + {C_1} \cr & f'\left( x \right) = 12{x^2} + {C_1} \cr & {\text{Find the general antiderivative }}f\left( x \right) \cr & {\text{Using the formulas in Table 2 }}\left( {{\text{see page 358}}} \right) \cr & {\text{Function: }}cf\left( x \right) \to {\text{Particular antiderivative: }}cF\left( x \right) \cr & {\text{Function: }}{x^n}\left( {n \ne - 1} \right) \to {\text{Particular antiderivative: }}\frac{{{x^{n + 1}}}}{{n + 1}} \cr & {\text{we obtain}} \cr & f\left( x \right) = 12\left( {\frac{{{x^3}}}{3}} \right) + {C_1}x + {C_2} \cr & f\left( x \right) = 4{x^3} + {C_1}x + {C_2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.