Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 4 - Section 4.9 - Antiderivatives - 4.9 Exercises - Page 362: 11

Answer

$G\left( x \right) = 12{x^{1/3}} - \frac{3}{4}{x^{8/3}} + C$

Work Step by Step

$$\eqalign{ & g\left( x \right) = 4{x^{ - 2/3}} - 2{x^{5/3}} \cr & {\text{Using the formulas in Table 2 }}\left( {{\text{see page 358}}} \right){\text{ }} \cr & {\text{Function: }}cf\left( x \right) \to {\text{Particular antiderivative: }}cF\left( x \right) \cr & {\text{Function: }}{x^n}\left( {n \ne - 1} \right) \to {\text{Particular antiderivative: }}cF\left( x \right) \cr & {\text{Function: }}f\left( x \right) + h\left( x \right) \to {\text{Particular antiderivative: }}f\left( x \right) + h\left( x \right) \cr & {\text{And applying the Theorem 1}},{\text{ we obtain}} \cr & G\left( x \right) = 4\left( {\frac{{{x^{ - 2/3 + 1}}}}{{ - 2/3 + 1}}} \right) - 2\left( {\frac{{{x^{5/3 + 1}}}}{{5/3 + 1}}} \right) + C \cr & G\left( x \right) = 4\left( {\frac{{{x^{1/3}}}}{{1/3}}} \right) - 2\left( {\frac{{{x^{8/3}}}}{{8/3}}} \right) + C \cr & G\left( x \right) = 12{x^{1/3}} - \frac{3}{4}{x^{8/3}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.