Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.1 - Derivatives of Polynomials and Exponential Functions - 3.1 Exercises - Page 182: 21

Answer

$y' = 3{e^x} - \frac{4}{3}{x^{ - 4/3}}$

Work Step by Step

$$\eqalign{ & y = 3{e^x} + \frac{4}{{\root 3 \of x }} \cr & {\text{Rewrite the function}} \cr & y = 3{e^x} + 4{x^{ - 1/3}} \cr & {\text{Differentiate}} \cr & y' = \frac{d}{{dx}}\left[ {3{e^x}} \right] + \frac{d}{{dx}}\left[ {4{x^{ - 1/3}}} \right] \cr & {\text{Use the constant multiple rule}} \cr & y' = 3\frac{d}{{dx}}\left[ {{e^x}} \right] + 4\frac{d}{{dx}}\left[ {{x^{ - 1/3}}} \right] \cr & {\text{Apply the power rule: }}\frac{d}{{dx}}\left[ {{x^n}} \right] = n{x^{n - 1}}{\text{ and }}\frac{d}{{dx}}\left[ {{e^x}} \right] = {e^x} \cr & y' = 3\left( {{e^x}} \right) + 4\left( { - \frac{1}{3}{x^{ - 4/3}}} \right) \cr & y' = 3{e^x} - \frac{4}{3}{x^{ - 4/3}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.