Answer
a) $f(1,3)=-\frac{3}{7}$
b) $f(-2,-1)=\frac{4}{5}$
c) $f(x+h,y)=\frac{(x+h)^2y}{2(x+h)-y^2}$
d) $f(x,x)=\frac{x^3}{2x-x^2}$
Work Step by Step
$f(x,y)=\frac{x^2y}{2x-y^2}$
a) $f(1,3)=\frac{1^2(3)}{2(1)-(3)^2}=-\frac{3}{7}$
b) $f(-2,-1)=\frac{(-2)^2(-1)}{2(-2)-(-1)^2}=\frac{4}{5}$
c) $f(x+h,y)=\frac{(x+h)^2y}{2(x+h)-y^2}$
d) $f(x,x)=\frac{x^2x}{2x-x^2}=\frac{x^3}{2x-x^2}$