Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 680: 9

Answer

$y=\frac{1}{2}x+\frac{3}{2}$

Work Step by Step

Find $(x,y)$ when $t=\pi$: $(x,y)=(\sin2\pi+\cos \pi,\cos2\pi-\sin\pi)$ $(x,y)=(0+(-1),1-0)$ $(x,y)=(-1,1)$ Find the slope of the tangent to the curve at $(-1,1)$: $m=\frac{dy}{dx}$ $m=\frac{dy/dt}{dx/dt}$ $m=\frac{-2\sin 2t-\cos t}{2\cos 2t-\sin t}|_{t=\pi}$ $m=\frac{-2\sin 2\pi -\cos \pi}{2\cos 2\pi-\sin\pi}$ $m=\frac{0-(-1)}{2-0}$ $m=\frac{1}{2}$ Find the equation of the tangent to the curve at $(-1,1)$: $y-1=m(x-(-1))$ $y-1=\frac{1}{2}(x+1)$ $y-1=\frac{1}{2}x+\frac{1}{2}$ $y=\frac{1}{2}x+\frac{3}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.