Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 680: 12

Answer

(a) $y=-\frac{1}{4}x+\frac{3}{4}$ (b) $y=-\frac{1}{4}x+\frac{3}{4}$

Work Step by Step

Part (a) Find the slope of the tangent to the curve: $m=\frac{dy}{dx}$ $m=\frac{dy/dt}{dx/dt}$ $m=\frac{-\frac{1}{(t+4)^2}}{\frac{1}{2\sqrt{t+4}}}$ $m=-\frac{2\sqrt{t+4}}{(t+4)^2}$ $m=-\frac{2x}{x^4}|_{x=2}$ (Since $x=\sqrt{t+4}\Rightarrow x^4=(x+4)^2$) $m=-\frac{2\cdot 2}{2^4}$ $m=-\frac{1}{4}$ Find the equation of the tangent line to the curve at $(2,1/4)$: $y-\frac{1}{4}=m(x-2)$ $y-\frac{1}{4}=-\frac{1}{4}(x-2)$ $y-\frac{1}{4}=-\frac{1}{4}x+\frac{2}{4}$ $y=-\frac{1}{4}x+\frac{3}{4}$ Part (b) Eliminate the parameter: $x=\sqrt{t+4}$ and $y=\frac{1}{t+4}$ $x^2=t+4$ and $y=\frac{1}{t+4}$ $y=\frac{1}{x^2}$ Find the slope of the tangent to the curve: $m=\frac{dy}{dx}$ $m=\frac{d}{dx}(\frac{1}{x^2})$ $m=-\frac{2}{x^3}|_{x=2}$ $m=-\frac{2}{2^3}$ $m=-\frac{1}{4}$ Find the equation of the tangent line to the curve at $(2,1/4)$: $y-\frac{1}{4}=m(x-2)$ $y-\frac{1}{4}=-\frac{1}{4}(x-2)$ $y-\frac{1}{4}=-\frac{1}{4}x+\frac{2}{4}$ $y=-\frac{1}{4}x+\frac{3}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.