Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 10 - Section 10.2 - Calculus with Parametric Curves - 10.2 Exercises - Page 680: 6

Answer

The slope is $\pi-1$.

Work Step by Step

Find $\frac{dy}{dt}$ and $\frac{dx}{dt}$: $\frac{dx}{dt}=\frac{d}{dt}(t+\cos \pi t)=1-\pi\sin\pi t$ $\frac{dy}{dt}=\frac{d}{dt}(-t+\sin\pi t)=-1+\pi\cos \pi t$ Find $\frac{dy}{dx}$: $\frac{dy}{dx}=\frac{-1+\pi\cos\pi t}{1-\pi \sin \pi t}$ Find the value of $t$ such that $(x,y)=(3,-2)$: $t+\cos\pi t=3$ and $-t+\sin\pi t=-2$ $\cos\pi t=3-t$ and $\sin \pi t=t-2$ (Take the square to both) $\cos^2\pi t=9-6t+t^2$ and $\sin^2\pi t=t^2-4t+4$ (Add both) $\sin^2\pi t+\cos^2\pi t=2t^2-10t+13$ (Apply the Pythagorean Theorem) $1=2t^2-10t+13$ $2t^2-10t+12=0$ $(2t-4)(t-3)=0$ $t=2\vee t=3$ For $t=2$, $x=2+\cos2\pi=2+1=3$ and $y=-2+\sin 2\pi=-2$ (satisfied) For $t=3$, $x=3+\cos3\pi =3+(-1)=2$ and $y=-3+\sin3\pi =-3$ (not satisfied) So, $t=2$. Find the slope of the tangent to the curve at $(x,y)=(3,-2)$: $\frac{dy}{dx}=\frac{-1+\pi\cos 2\pi}{1-\pi\sin 2\pi}=\frac{-1+\pi}{1-0}=\pi-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.