Answer
$t=36$ years
Work Step by Step
$P_{1}=4000, r_{1}=3\%=0.03, n_{1}=1$
$A_{1}=4000(1+0.03)^t$
$A_{1}=4000(1.03)^t$
and $P_{2}=2000, r_{2}=5\%=0.05, n_{2}=1$
$A_{2}=2000(1+0.05)^t$
$A_{2}=2000(1.05)^t$
$A_{1}=A_{2}$
$4000(1.03)^t=2000(1.05)^t$
$2(1.03)^t=(1.05)^t$
$2=\frac{(1.05)^t}{(1.03)^t}$
$2=(1.02)^t$
$\ln 2=t\ln 1.02$
$t\approx 36$ years