Answer
Perimeter: $ 4\left( 2 \sqrt{3}+\sqrt{2}\right) $ inches
Area: $2(7+2\sqrt 6)$ square inches
Work Step by Step
We know that a square has all sides equal and that the area and perimeter are given by: $A= s^2$ and $P = 4S$. For this problem, we have
\begin{equation}
\begin{aligned}
s &=2\sqrt{3}+\sqrt{2} \\
\end{aligned}
\end{equation}
The perimeter and area of the square are given by:
\begin{equation}
\begin{aligned}
P & = 4s \\
& =4\left( 2 \sqrt{3}+\sqrt{2}\right) \\
A&= s^2\\
& = \left( 2 \sqrt{3}+\sqrt{2} \right)^2\\
&= \left( 2 \sqrt{3}\right)^2+2\left( 2 \sqrt{3}\right)\cdot \left( \sqrt{2}\right)+\left( \sqrt{2}\right)^2\\
&= 4\cdot 3+4\cdot\sqrt{6}+2\\
&= 14+4\sqrt{6}\\
&=2(7+2\sqrt 6).
\end{aligned}
\end{equation}