Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - Chapter Review Exercises - Page 671: 99

Answer

$-2-\frac{\sqrt{3}}{3}\ i$; $-2+\frac{\sqrt{3}}{3}\ i$

Work Step by Step

Given \begin{equation} 3 x^2+12 x+15=2. \end{equation} This equation can be best solved by using the quadratic formula. \begin{equation} \begin{aligned} 3 x^2+12 x+15&=2\\ 3 x^2+12 x+13&=0\\ x&=\frac{-12 \pm \sqrt{12^2-4 \cdot 3 \cdot 13}}{2 \cdot 3}\\ x&= \frac{-12 \pm \sqrt{-12} i}{6}\\ x&=\frac{-12 \pm 2 \sqrt{3} i}{6}\\ &= -2\pm \frac{\sqrt{3}}{3}\ i. \end{aligned} \end{equation} The solution is \begin{equation} x= -2-\frac{\sqrt{3}}{3}\ i\ ,\quad x= -2+ \frac{\sqrt{3}}{3}\ i. \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.