Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - Chapter Review Exercises - Page 671: 100

Answer

$-2-\sqrt{5}\ i$; $-2+\sqrt{5}\ i$

Work Step by Step

Given \begin{equation} -b^2-4 b+6=15. \end{equation} This equation can be best solved by using the quadratic formula. \begin{equation} \begin{aligned} -b^2-4 b+6&=15\\ -b^2-4 b-9&=0\\ b^2+4 b+9&=0\\ b&=\frac{-4 \pm \sqrt{4^2-4 \cdot 1 \cdot 9}}{2 \cdot 1}\\ b&= \frac{-4 \pm \sqrt{-20} }{2 }\\ &=\frac{-4 \pm 2 \sqrt{5}i}{2 }\\ & = -2\pm \sqrt 5\ i. \end{aligned} \end{equation} The solution is \begin{equation} b=-2-\sqrt{5}\ i\ ,\quad b=-2+\sqrt{5}\ i. \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.