Answer
(a) $f(4)-g(4)=-33$
(b) $f(x)-g(x)=-9x+3$
(c) $\frac{f(x)}{g(x)}= -\frac {x+4}{2x-5}$
(d) $\frac{f(5)}{g(5)}= -\frac{9}{5}$
Work Step by Step
$f(x)=-3x-12$
$g(x)=6x-15$
(a)
$f(4)=-3\times4-12=-24$
$g(4)=6\times4-15=24-15=9$
$f(4)-g(4)=-24-9=-33$
(b)
$f(x)-g(x)=-3x-12-(6x-15)=-3x-12-6x+15$
$f(x)-g(x)=-3x-6x-12+15$
$f(x)-g(x)=-9x+3$
(c)
$\frac{f(x)}{g(x)}= \frac{-3x-12}{6x-15}$
$\frac{f(x)}{g(x)}= \frac {(-3)(x+4)}{(3)(2x-5)}$
$\frac{f(x)}{g(x)}= -\frac {x+4}{2x-5}$ ................... eq (1)
(d)
Put $x=5$ in equation (1)
$\frac{f(5)}{g(5)}= -\frac{ 5+4}{ 2\times5-5}$
$\frac{f(5)}{g(5)}= -\frac{9}{5}$