Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 3 - Exponents, Polynomials and Functions - 3.1 Rules for Exponents - 3.1 Exercises - Page 233: 55

Answer

$\frac{4 h^{6}}{25g^{6}}$

Work Step by Step

Given the expression: $$\left( \frac{2g^{-2}h^{-3}}{5gh^{-6}} \right)^2.$$ First we apply the quotient rule inside the parenthesis and simplify: $$\begin{aligned} \left( \frac{2g^{-2}h^{-3}}{5gh^{-6}} \right)^2&= \left( \frac{2 h^{-3+6}g^{-2-1}}{5} \right)^2\\\\ &= \left( \frac{2 h^{3}g^{-3}}{5} \right)^2. \end{aligned}$$ Then we the the negative exponent rule: $$\begin{aligned} \left( \frac{2 h^{3}g^{-3}}{5} \right)^2=\left( \frac{2 h^{3}}{5g^3} \right)^2. \end{aligned}$$ Finally we use the power rule: $$\begin{aligned} \left( \frac{2 h^{3}}{5g^3} \right)^2&= \frac{4 h^{6}}{25g^{6}}. \end{aligned}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.