Answer
A) $5ab^3$
B) $5ab^3$
C) Yes.
D) $125a^3b^9$
Work Step by Step
Given $$\begin{aligned}
\frac{(5ab^3)^{14}}{(5ab^3)^{11}}\\
\end{aligned}$$ Part A
The base of the exponent $14$ is $5ab^3$.
Part B
The base of the exponent $11$ is $5ab^3$.
Part C
Yes. The bases are the same and so, you can subtract the exponents.
Part D We have: $$\begin{aligned}
\frac{(5ab^3)^{14}}{(5ab^3)^{11}}&= (5ab^3)^{14-11}\\
&=(5ab^3)^{3} \\
&=125a^3b^9.
\end{aligned}$$