Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 8 - Section 8.2 - Solving Quadratic Equations by the Quadratic Formula - Exercise Set - Page 492: 38

Answer

$5 \text{ (double root)}$

Work Step by Step

The standard form of the given equation, $ \dfrac{2}{3}x^2-\dfrac{20}{3}x=-\dfrac{100}{6} ,$ is \begin{array}{l}\require{cancel} 6\left( \dfrac{2}{3}x^2-\dfrac{20}{3}x \right)=\left( -\dfrac{100}{6} \right)6 \\\\ 2(2x^2)-2(20x)=-100(1) \\\\ 4x^2-40x=-100 \\\\ 4x^2-40x+100=0 \\\\ \dfrac{4x^2-40x+100}{4}=\dfrac{0}{4} \\\\ x^2-10x+25=0 .\end{array} Using $\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$ (or the Quadratic Formula), the solutions of the quadratic equation, $ x^2-10x+25=0 ,$ are \begin{array}{l}\require{cancel} \dfrac{-(-10)\pm\sqrt{(-10)^2-4(1)(25)}}{2(1)} \\\\= \dfrac{10\pm\sqrt{100-100}}{2} \\\\= \dfrac{10\pm\sqrt{0}}{2} \\\\= \dfrac{10\pm0}{2} \\\\= \dfrac{10}{2} \\\\= 5 .\end{array} Hence, the solutions are $ 5 \text{ (double root)} .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.