Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 8 - Section 8.2 - Solving Quadratic Equations by the Quadratic Formula - Exercise Set - Page 492: 29

Answer

$\left\{ \dfrac{3-\sqrt{29}}{2},\dfrac{3+\sqrt{29}}{2} \right\}$

Work Step by Step

The standard form of the given equation, $ \dfrac{x^2}{3}-x=\dfrac{5}{3} ,$ is \begin{array}{l}\require{cancel} 3\left( \dfrac{x^2}{3}-x \right)=\left( \dfrac{5}{3} \right)3 \\\\ 1(x^2)+3(-x)=5(1) \\\\ x^2-3x=5 \\\\ x^2-3x-5=0 .\end{array} Using $\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$ (or the Quadratic Formula), the solutions of the quadratic equation, $ x^2-3x-5=0 ,$ are \begin{array}{l}\require{cancel} \dfrac{-(-3)\pm\sqrt{(-3)^2-4(1)(-5)}}{2(1)} \\\\= \dfrac{3\pm\sqrt{9+20}}{2} \\\\= \dfrac{3\pm\sqrt{29}}{2} .\end{array} Hence, the solutions are $ \left\{ \dfrac{3-\sqrt{29}}{2},\dfrac{3+\sqrt{29}}{2} \right\} .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.