Intermediate Algebra (6th Edition)

Published by Pearson
ISBN 10: 0321785045
ISBN 13: 978-0-32178-504-6

Chapter 8 - Section 8.2 - Solving Quadratic Equations by the Quadratic Formula - Exercise Set - Page 492: 36

Answer

$\left\{ -4-2i,-4+2i \right\}$

Work Step by Step

The standard form of the given equation, $ \dfrac{1}{8}x^2+x+\dfrac{5}{2}=0 ,$ is \begin{array}{l}\require{cancel} 8\left( \dfrac{1}{8}x^2+x+\dfrac{5}{2} \right)=(0)8 \\\\ 1(x^2)+8(x)+4(5)=0 \\\\ x^2+8x+20=0 .\end{array} Using $\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$ (or the Quadratic Formula), the solutions of the quadratic equation, $ x^2+8x+20=0 ,$ are \begin{array}{l}\require{cancel} \dfrac{-(8)\pm\sqrt{(8)^2-4(1)(20)}}{2(1)} \\\\= \dfrac{-8\pm\sqrt{64-80}}{2} \\\\= \dfrac{-8\pm\sqrt{-16}}{2} \\\\= \dfrac{-8\pm i\sqrt{(4)^2}}{2} \\\\= \dfrac{-8\pm 4i}{2} \\\\= \dfrac{2(-4\pm 2i)}{2} \\\\= \dfrac{\cancel{2}(-4\pm 2i)}{\cancel{2}} \\\\= -4\pm 2i .\end{array} Hence, the solutions are $ \left\{ -4-2i,-4+2i \right\} .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.