## Intermediate Algebra (12th Edition)

Published by Pearson

# Chapter 8 - Section 8.1 - The Square Root Property and Completing the Square - 8.1 Exercises - Page 512: 53

#### Answer

$\dfrac{1}{36}$

#### Work Step by Step

$\bf{\text{Solution Outline:}}$ To determine the number that will complete the square to solve the given equation, $3w^2-w-24=0 ,$ use first the properties of equality to express the equation in the form $x^2+bx=c.$ Once in this form, the needed number to complete the square of the left side is equal to $\left( \dfrac{b}{2} \right)^2.$ $\bf{\text{Solution Details:}}$ Using the properties of equality, in the form $x^2+bx=c,$ the given equation is equivalent to \begin{array}{l}\require{cancel} \dfrac{3w^2-w-24}{3}=\dfrac{0}{3} \\\\ w^2-\dfrac{1}{3}w-8=0 \\\\ w^2-\dfrac{1}{3}w=8 .\end{array} In the equation above, $b= -\dfrac{1}{3} .$ Using $\left( \dfrac{b}{2} \right)^2$, the number that will complete the square on the left side of the equal sign is \begin{array}{l}\require{cancel} \left( \dfrac{-\dfrac{1}{3}}{2} \right)^2 \\\\= \left( -\dfrac{1}{3}\div2 \right)^2 \\\\= \left( -\dfrac{1}{3}\cdot\dfrac{1}{2} \right)^2 \\\\= \left( -\dfrac{1}{6} \right)^2 \\\\= \dfrac{1}{36} .\end{array}

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.