Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Chapter 8 Test - Page 577: 6

Answer

$\left\{\dfrac{2}{3}\right\}$

Work Step by Step

Squaring both sides, the given equation, $ 3x=\sqrt{\dfrac{9x+2}{2}} $, is equivalent to \begin{align*} (3x)^2&=\left(\sqrt{\dfrac{9x+2}{2}}\right)^2 \\\\ 9x^2&=\dfrac{9x+2}{2} .\end{align*} The equation above has $a= 18 $, $b= -9 $ and $c= -2 $. Using $ x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} $ or the Quadratic Formula, then \begin{align*} x&=\dfrac{-(-9)\pm\sqrt{(-9)^2-4(18)(-2)}}{2(18)} \\\\&= \dfrac{9\pm\sqrt{81+144}}{36} \\\\&= \dfrac{9\pm\sqrt{225}}{36} .\end{align*} Using the properties of radicals, the equation above is equivalent to \begin{align*}\require{cancel} t&=\dfrac{9\pm\sqrt{(15)^2}}{36} \\\\ t&=\dfrac{9\pm15}{36} \end{align*}\begin{array}{l|r} t=\dfrac{9-15}{36} & t=\dfrac{9+15}{36} \\\\ t=\dfrac{-6}{36} & t=\dfrac{24}{36} \\\\ t=-\dfrac{1}{6} & t=\dfrac{2}{3} \end{array} Since both sides of the original equation were raised to the second power, then checking of solutions is a must. Substituting the solutions in the original equation results to \begin{array}{l|r} \text{If }t=-\dfrac{1}{6}: & \text{If }t=\dfrac{2}{3}: \\\\ 3\left(-\dfrac{1}{6}\right)\overset{?}=\sqrt{\dfrac{9\left(-\dfrac{1}{6}\right)+2}{2}} & 3\left(\dfrac{2}{3}\right)\overset{?}=\sqrt{\dfrac{9\left(\dfrac{2}{3}\right)+2}{2}} \\\\ -\dfrac{1}{2}\ne\text{some nonnegative number} & 2\overset{?}=\sqrt{\dfrac{6+2}{2}} \\\\ & 2\overset{?}=\sqrt{\dfrac{8}{2}} \\\\ & 2\overset{?}=\sqrt{4} \\\\& 2\overset{\checkmark}=2 .\end{array} Since $x=-\dfrac{1}{6}$ does not satisfy the original equation, then the only solution is $x=\dfrac{2}{3}$. Hence, the solution set of the equation $ 3x=\sqrt{\dfrac{9x+2}{2}} $ is $\left\{\dfrac{2}{3}\right\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.