Intermediate Algebra (12th Edition)

Published by Pearson
ISBN 10: 0321969359
ISBN 13: 978-0-32196-935-4

Chapter 8 - Chapter 8 Test - Page 577: 5

Answer

$\dfrac{2}{3}\pm\dfrac{\sqrt{11}}{3}i$

Work Step by Step

In the form $ax^2+bx+c=0,$ the given equation, $ 3t^2-4t=-5 ,$ is equivalent to \begin{align*} 3t^2-4t+5&=0 .\end{align*} The equation above has $a= 3 $, $b= -4 $ and $c= 5 $. Using $ x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a} $ or the Quadratic Formula, then \begin{align*} t&=\dfrac{-(-4)\pm\sqrt{(-4)^2-4(3)(5)}}{2(3)} \\\\&= \dfrac{4\pm\sqrt{16-60}}{6} \\\\&= \dfrac{4\pm\sqrt{-44}}{6} .\end{align*} Using the properties of radicals, the equation above is equivalent to \begin{align*}\require{cancel} t&=\dfrac{4\pm\sqrt{44\cdot(-1)}}{6} \\\\ t&=\dfrac{4\pm\sqrt{4\cdot11\cdot(-1)}}{6} \\\\ t&=\dfrac{4\pm\sqrt{4}\cdot\sqrt{11}\cdot\sqrt{-1}}{6} \\\\ t&=\dfrac{4\pm2\cdot\sqrt{11}\cdot i}{6} &(\text{use }i=\sqrt{-1}) \\\\ t&=\dfrac{\cancelto24\pm\cancelto12\cdot\sqrt{11}\cdot i}{\cancelto36} \\\\ t&=\dfrac{2\pm\sqrt{11}\cdot i}{3} \\\\ t&=\dfrac{2}{3}\pm\dfrac{\sqrt{11}}{3}i .\end{align*} Hence, the solution set of $ 3t^2-4t=-5 $ is $ \dfrac{2}{3}\pm\dfrac{\sqrt{11}}{3}i $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.