Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 4 - Vector Spaces - 4.4 Spanning Sets and Linear Independence - 4.4 Exercises - Page 178: 43


$S$ is linearly independent set of vectors.

Work Step by Step

Consider the combination $$a(x^2+3x+1)+b(2x^2+x-1)+c(4x)=0, \quad a,b,c\in R.$$ Which yields the following system of equations \begin{align*} a+2b&=0\\ 3a+b+4c&=0\\ a-b&=0. \end{align*} The determinant of the coefficient matrix is given by $$\left| \begin {array}{cccc} 1&2&0\\ 3&1&4\\1&-1&0\end {array} \right|=12 $$ Since determinant is non zero, hence there exist a unique solution for the above system; that is, the trivial solution, $$a=0,\quad b=0, \quad c=0.$$ Then, $S$ is linearly independent set of vectors.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.