Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter R - Elementary Algebra Review - R.6 Rational Expressions and Equations - R.6 Exercise Set - Page 980: 29


The simplified form of the expression $\frac{t}{{{t}^{2}}-1}-\frac{1}{1-t}$ is$\frac{2t+1}{{{t}^{2}}-1}$.

Work Step by Step

$\frac{t}{{{t}^{2}}-1}-\frac{1}{1-t}$ Obtain the alternative form of the expression by multiplying the second term of rational expression $\frac{t}{{{t}^{2}}-1}-\frac{1}{1-t}$ by $\frac{1+t}{1+t}$ and 1 in the form $\frac{-1}{-1}$: $\begin{align} & \frac{t}{{{t}^{2}}-1}-\frac{1}{1-t}=\frac{t}{{{t}^{2}}-1}-\frac{1}{1-t}.\frac{1+t}{1+t}.\frac{-1}{-1} \\ & =\frac{t}{{{t}^{2}}-1}-\frac{1+t}{1-{{t}^{2}}}.\frac{-1}{-1} \end{align}$ Apply the Distributive property: $\begin{align} & \frac{t}{{{t}^{2}}-1}-\frac{1}{1-t}=\frac{t}{{{t}^{2}}-1}-\frac{-\left( 1+t \right)}{-\left( 1-{{t}^{2}} \right)} \\ & =\frac{t}{{{t}^{2}}-1}-\frac{-\left( 1+t \right)}{-\left( 1-{{t}^{2}} \right)} \\ & =\frac{t}{{{t}^{2}}-1}+\frac{1+t}{{{t}^{2}}-1} \end{align}$ Now, the denominators are same. So, add the numerators and keep the common denominator: $\begin{align} & \frac{t}{{{t}^{2}}-1}-\frac{1}{1-t}=\frac{t}{{{t}^{2}}-1}+\frac{1+t}{{{t}^{2}}-1} \\ & =\frac{t+1+t}{{{t}^{2}}-1} \end{align}$ Rearrange the terms and simplify further as follows: $\begin{align} & \frac{t}{{{t}^{2}}-1}-\frac{1}{1-t}=\frac{t+1+t}{{{t}^{2}}-1} \\ & =\frac{2t+1}{{{t}^{2}}-1} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.