Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter R - Elementary Algebra Review - R.6 Rational Expressions and Equations - R.6 Exercise Set - Page 980: 28


The simplified form of the expression $\frac{3}{y-1}-\frac{y}{1-y}$ is $\frac{3+y}{y-1}$.

Work Step by Step

$\frac{3}{y-1}-\frac{y}{1-y}$ Obtain the alternative form of the expression by multiplying the rational expression $\frac{3}{y-1}-\frac{y}{1-y}$ by 1 in the form$\frac{-1}{-1}$: $\begin{align} & \frac{3}{y-1}-\frac{y}{1-y}=\frac{3}{y-1}-\frac{y}{1-y}.1 \\ & =\frac{3}{y-1}-\frac{y}{1-y}.\frac{-1}{-1} \end{align}$ Apply the Distributive property: $\begin{align} & \frac{3}{y-1}-\frac{y}{1-y}=\frac{3}{y-1}-\frac{y}{1-y}.\frac{-1}{-1} \\ & =\frac{3}{y-1}-\frac{-\left( y \right)}{-\left( 1-y \right)} \\ & =\frac{3}{y-1}+\frac{y}{y-1} \end{align}$ Now, the denominators are same. So, add the numerators and keep the common denominator: $\begin{align} & \frac{3}{y-1}-\frac{y}{1-y}=\frac{3}{y-1}+\frac{y}{y-1} \\ & =\frac{3+y}{y-1} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.