Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 11 - Quadratic Functions and Equations - 11.1 Quadratic Equations - 11.1 Exercise Set - Page 707: 96

Answer

$\frac{1}{3},i\sqrt{\frac{8}{3}},-i\sqrt{\frac{8}{3}}$

Work Step by Step

$f\left( x \right)=\left( x-\frac{1}{3} \right)\left( {{x}^{2}}+6 \right)$ And, $\text{g}\left( x \right)=\left( x-\frac{1}{3} \right)\left( {{x}^{2}}-\frac{2}{3} \right)$ At $x=a$, the value of the function $f\left( x \right)$ will be, $\begin{align} & f\left( x \right)=\left( x-\frac{1}{3} \right)\left( {{a}^{2}}+6 \right) \\ & f\left( a \right)=\left( a-\frac{1}{3} \right)\left( {{x}^{2}}+6 \right) \\ \end{align}$ At $x=a$, the value of the function $g\left( x \right)$ will be, $\begin{align} & \text{g}\left( x \right)=\left( x-\frac{1}{3} \right)\left( {{x}^{2}}-\frac{2}{3} \right) \\ & \text{g}\left( a \right)=\left( a-\frac{1}{3} \right)\left( {{a}^{2}}-\frac{2}{3} \right) \\ \end{align}$ Using: $\left( f+g \right)\left( a \right)=f\left( a \right)+g\left( a \right)$ Put the values of $f\left( a \right)\text{ and }g\left( a \right)$ in the above equation, $\begin{align} & \left( f+g \right)\left( a \right)=f\left( a \right)+g\left( a \right) \\ & \left( f+g \right)\left( a \right)=\left( a-\frac{1}{3} \right)\left( {{a}^{2}}+6 \right)+\left( a-\frac{1}{3} \right)\left( {{a}^{2}}-\frac{2}{3} \right) \\ \end{align}$ And from the equation, $\left( f+g \right)\left( a \right)=0$, so $\begin{align} & \left( f+g \right)\left( a \right)=\left( a-\frac{1}{3} \right)\left( {{a}^{2}}+6 \right)+\left( a-\frac{1}{3} \right)\left( {{a}^{2}}-\frac{2}{3} \right) \\ & 0=\left( a-\frac{1}{3} \right)\left( {{a}^{2}}+6 \right)+\left( a-\frac{1}{3} \right)\left( {{a}^{2}}-\frac{2}{3} \right) \end{align}$ $\begin{align} & \left( a-\frac{1}{3} \right)\left( {{a}^{2}}+6 \right)+\left( a-\frac{1}{3} \right)\left( {{a}^{2}}-\frac{2}{3} \right)=0 \\ & \left( a-\frac{1}{3} \right)\left( {{a}^{2}}+6+{{a}^{2}}-\frac{2}{3} \right)=0 \\ & \left( a-\frac{1}{3} \right)\left( 2{{a}^{2}}+\frac{16}{3} \right)=0 \end{align}$ For $\left( a-\frac{1}{3} \right)=0$, $\begin{align} & a-\frac{1}{3}=0 \\ & a=\frac{1}{3} \\ \end{align}$ For $\left( 2{{a}^{2}}+\frac{16}{3} \right)=0$, $\begin{align} & 2{{a}^{2}}+\frac{16}{3}=0 \\ & 2{{a}^{2}}=-\frac{16}{3} \\ & {{a}^{2}}=-\frac{16}{6} \end{align}$ This gives: $\begin{align} & {{a}^{2}}=-\frac{8}{3} \\ & a=\pm i\sqrt{\frac{8}{3}} \\ \end{align}$ Thus, the answer is: $\frac{1}{3},i\sqrt{\frac{8}{3}},-i\sqrt{\frac{8}{3}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.