#### Answer

$d\approx0.915
\text{ units}
$

#### Work Step by Step

Using $d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$ or the Distance Formula, the distance, $d$, between the given points, $\left(
\dfrac{5}{7}, \dfrac{1}{14}
\right) \text{ and } \left(
\dfrac{1}{7}, \dfrac{11}{14}
\right),$ is
\begin{array}{l}\require{cancel}
d=\sqrt{ \left(\dfrac{5}{7}-\dfrac{1}{7} \right)^2+\left(\dfrac{1}{14}-\dfrac{11}{14} \right)^2}
\\\\
d=\sqrt{ \left( \dfrac{4}{7} \right)^2+\left(\dfrac{-10}{14}\right)^2}
\\\\
d=\sqrt{ \dfrac{16}{49}+\dfrac{100}{196}}
\\\\
d=\sqrt{ \dfrac{41}{49}}
\\\\
d= \dfrac{\sqrt{41}}{7}
\\\\
d\approx0.915
\text{ units}
.\end{array}