#### Answer

$\dfrac{7}{\sqrt[3]{98}}$

#### Work Step by Step

Rationalizing the numerator, the given expression, $
\dfrac{\sqrt[3]{7}}{\sqrt[3]{2}}
,$ is equivalent to
\begin{array}{l}
\dfrac{\sqrt[3]{7}}{\sqrt[3]{2}}\cdot\dfrac{\sqrt[3]{7^2}}{\sqrt[3]{7^2}}
\\\\=
\dfrac{\sqrt[3]{7^3}}{\sqrt[3]{2\cdot49}}
\\\\=
\dfrac{7}{\sqrt[3]{98}}
.\end{array}