Elementary Algebra

Published by Cengage Learning
ISBN 10: 1285194055
ISBN 13: 978-1-28519-405-9

Chapter 2 - Real Numbers - Chapter 2 Review Problem Set - Page 88: 25


$= \frac{1}{24}$

Work Step by Step

1. Follow the acronym PEDMAS: P: arenthesis E: ponents D:ivision M:ultiplication A:ddition S:ubtraction $= $ P.E.D.M.A.S This is used to determine which order of operations is completed first from top to bottom. For example, you would complete the division of two numbers before the addition of another two numbers. In this case, we multiply and divide before adding and subtracting. Note: We never can divide by a fraction, so instead of dividing, we multiply by the reciprocal of the fraction: $\frac{1}{6} + \frac{2}{3} \times \frac{3}{4} - \frac{5}{6} \div \frac{8}{6}$ $= \frac{1}{6} + \frac{6}{12} - \frac{5}{6} \times \frac{6}{8}$ $= \frac{1}{6} + \frac{6}{12} - \frac{30}{48}$ 2. Find a common denominator when adding and subtracting: In order to obtain a common denominator of $48$, we only have to multiply the first fraction by $8/8$ and the second fraction by $4/4$. $= \frac{8}{48} + \frac{24}{48} - \frac{30}{48}$ $= \frac{32}{48}- \frac{30}{48}$ 3. Finally we simplify the fraction: $= \frac{2}{48}$ $= \frac{1}{24}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.