Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 9 - Systems of Differential Equations - 9.1 First-Order Linear Systems - Problems - Page 588: 16

Answer

See below

Work Step by Step

Given $\frac{d^2x}{dt^2}-3\frac{dy}{dt}+x=\sin t\\ \frac{d^2y}{dt^2}-t\frac{dx}{dt}+e^ty=t^2$ We introduce new variables: $x_1=x\\ x_2=\frac{dx}{dt}\\ x_3=y\\ x_4=\frac{dy}{dt}$ Then the given differential equation can be replaced by $\frac{dx_2}{dt}-3x_4+x_1=\sin t\\ \frac{dx_4}{dt}-tx_2e^tx_3=t^2$ Hence, $x_2=\frac{dx_1}{dt}\\ \frac{dx_2}{dt}=3x_4-x_1+\sin t\\ \frac{dx_4}{dt}=tx_2+e^tx^3+t^2\\ x_4=\frac{dx_3}{dt}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.