Answer
See below
Work Step by Step
Given
$\frac{dx}{dt}-ty=\cos t\\
\frac{d^2y}{dt^2}-\frac{dx}{dt}+x=e^t$
We introduce new variables:
$x_1=x\\
x_2=\frac{dx}{dt}\\
x_3=y\\
x_4=\frac{dy}{dt}$
Then the given differential equation can be replaced by
$\frac{dx_1}{dt}-x_3t=\cos t\\
\frac{dx_4}{dt}-x_2+x_1=e^t$
Hence,
$x_2=\frac{dx_1}{dt}\\
\frac{dx_1}{dt}=x_3t+\cos t\\
\frac{dx_4}{dt}=-x_1+x_2+e^t\\
x_4=\frac{dx_3}{dt}$