Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 8 - Linear Differential Equations of Order n - 8.7 The Variation of Parameters Method - Problems - Page 556: 5

Answer

See below

Work Step by Step

Given: $y''-4y=\frac{8}{e^{2x}+1}$ In this case, the auxiliary polynomial of the associated homogeneous equation is $P(r) = r^2-4 =0\\ \rightarrow r=\pm 2$ so that three linearly independent solutions are: $y_1(x)=e^{2x}\\ y_2(x)=xe^{-2x}$ A particular solution is: $y_p(x)=u_1(x)e^{2x}+u_2(x)xe^{-2x}$ Obtain $u_1'(x)e^{2x}+u_2'(x)xe^{-2x}=0\\ u_1'(x)e^{2x}+u_2'(x)(xe^{-2x})'= \frac{8}{e^{2x}+1}$ Consequently $u_1'=\frac{2}{e^{2x}(e^{2x}+1)}\\ u_2'=\frac{-2e^{2x}}{e^{2x}(e^{2x}+1)}$ By integrating, we obtain $u_1=\int\frac{2}{e^{2x}(e^{2x}+1)}dx=\ln(\frac{e^{2x}+1}{e^{2x}})-e^{-2x}+C_1\\ u_2=\frac{-2e^{2x}}{e^{2x}(e^{2x}+1)} dx=\ln(\frac{e^{2x}+1}{e^{2x}})+C_2 $ where $C_1,C_2$ are integration constants. The general solution to the given differential equation is therefore: $y(x)=e^{2x}(\ln\frac{e^{2x}+1}{e^{2x}}-e^{-2x}+C_1)+e^{-2x}(\ln \frac{e^{2x}+1}{e^{2x}}+C_2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.