Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 8 - Linear Differential Equations of Order n - 8.7 The Variation of Parameters Method - Problems - Page 556: 2

Answer

See below

Work Step by Step

Given: $y''+4y'+4y=x^{-2}e^{-2x}$ In this case, the auxiliary polynomial of the associated homogeneous equation is $P(r) = r^2 +4r + 4r =0\\ \rightarrow (r+2)^2=0$ so that three linearly independent solutions are: $y_1(x)=e^{-2x}\\ y_2(x)=xe^{-2x}$ A particular solution is: $y_p(x)=e^{-2x}u_1(x)+xe^{-2x}u_2(x)$ Obtain $e^{-2x}+xe^{-2x}=0\\ e^{-2x}-2xe^{-2x}= x^{-2}e^{-2x}$ We therefore reduce the augmented matrix of the system to row-echelon form: $\begin{bmatrix} e^{-2x} & xe^{-2x} |0\\ -2e^{-2x} & e^{-2x}-2xe^{-2x}| x^{-2}e^{-2x} \end{bmatrix} \approx \begin{bmatrix} e^{-2x} & xe^{-2x} |0\\ 0 & e^{-2x}| x^{-2}e^{-2x} \end{bmatrix}$ Consequently $u_1'=-x^{-1}=-\frac{1}{x}\\ u_2'=x^{-2}=\frac{1}{x^2}$ By integrating, we obtain $u_1=-\int \frac{1}{x}dx=-\ln x+C_1\\ u_2=\int \frac{1}{x^2}dx=-\frac{1}{x}+C_2 $ where $C_1,C_2$ are integration constants. The general solution to the given differential equation is therefore: $y(x)=(-\ln x +C_1)e^{-2x}+(-\frac{1}{x}+C_2)xe^{-2x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.