Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.8 Row Space and Column Space - Problems - Page 325: 14

Answer

See below

Work Step by Step

Given $A=\begin{bmatrix} 1 & 2 & 4\\ 5 & 11 & 21\\ 3 & 7 & 13 \end{bmatrix}$ Obtain: $A=\begin{bmatrix} 1 & 2 & 4\\ 5 & 11 & 21\\ 3 & 7 & 13 \end{bmatrix}\approx \begin{bmatrix} 1 & 2 & 4\\ 0 & -1 & -1\\ 0 & -1 & -1 \end{bmatrix}\approx\begin{bmatrix} 1 & 2 & 4\\ 0 & -1 & -1\\ 0 & 0 & 0 \end{bmatrix}\\ \rightarrow Rowspace(A)=(1,2,4),(0,-1,-1)$ Since the subspace has dimension $2$ we have: $z(1)+2-4=4-4=0\\ z(0)-1+1=-1+1=0$ Hence, rowspace(A) corresponds to the plane with Cartesian equation $2x + y − z = 0$ $A=\begin{bmatrix} 1 & 2 & 4\\ 5 & 11 & 21\\ 3 & 7 & 13 \end{bmatrix}\approx \begin{bmatrix} 1 & 0 & 0\\ 5 & -1 & -1\\ 3 & -1 & -1 \end{bmatrix}\\ \rightarrow Colspace(A)=(1,5,3),(0,-1,-1)$ Thus, this forms the base for the subspace $S=(x,y,z):2x-y+z=0$ $S$ corresponds to all points of $R^3$ in plane $2x-y+z=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.