Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.5 Linear Dependence and Linear Independence - Problems - Page 297: 29

Answer

See below

Work Step by Step

Given: $V=M_2(R)$ and $v_1=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\\ v_2=\begin{bmatrix} -1 & 2 \\ 5 & 7 \end{bmatrix}\\ v_3=\begin{bmatrix} 3 & 2\\ 1 & 1 \end{bmatrix}$ Obtain the system $av_1+bv_2+cv_3=0\\ \begin{bmatrix} 1 & -1 & 3 \\ 2 & 2 & 2\\ 3 & 5 & 1\\4 & 7 & 1 \end{bmatrix}\begin{bmatrix} a \\ b \\ c \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\\ \rightarrow \begin{bmatrix} 1 & -1 & 3 \\ 0 & -4 & 4\\ 0 & -8 & 8\\ 0 & -3 & 3 \end{bmatrix}\begin{bmatrix} a \\ b \\ c \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}\\ \rightarrow \begin{bmatrix} 1 & -1 & 3 \\ 0 & -4 & 4\\ 0 & 0 & 0\\0 & 0 & 0 \end{bmatrix}\begin{bmatrix} a \\ b \\ c \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ then we have $-4b+4c=0\rightarrow b=c\\ a-b+3c=0\rightarrow a=b-3c=-2c$ Suppose $a=-2\\ b=c=1$ We can see that $-2v_1+v_2+v_3=0$ Thus, we can span the same subspace with just two matrices. We can choose between: $v_1,v_2\\ v_2,v_3\\ v_1,v_3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.