Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.4 Spanning Sets - Problems - Page 283: 22

Answer

See below

Work Step by Step

Assume $A=\begin{bmatrix} a & b & c \\ d & e &f \\g & h & i \end{bmatrix} \in M_3(R)$ We can see that every matrix $A \in S$ is a scalar multiple of the matrix $\begin{bmatrix} a & b &c \\ d & e & f \\ g & h & i \end{bmatrix}=a\begin{bmatrix} 1 & 0 & 0\\0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}+b\begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}+c\begin{bmatrix} 0 & 0 & 1\\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}+d\begin{bmatrix} 0 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}+e\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}+f\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Hence, the set $\{A=\begin{bmatrix} a & b &c \\ d & e & f \\ g & h & i \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0\\0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},\begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},\begin{bmatrix} 0 & 0 & 1\\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix},\begin{bmatrix} 0 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix},\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix},\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}\}$ spans $S$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.