Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.4 Spanning Sets - Problems - Page 283: 21

Answer

See below

Work Step by Step

Assume $A=\begin{bmatrix} a & b & c \\ d & e &f \\g & h & i \end{bmatrix} \in M_3(R):a+b+c=d+e+f=g+h+i=a+d+g=b+e+h=c+f+i=0$ First, we have the system: $a+b+c=0\\d+e+f=0\\g+h+i=0 \\ \rightarrow a=-b-c\\ d=-e-f\\g=-h-i$ Substitute: $\begin{bmatrix} a & b & c \\ d & e &f \\g & h & i \end{bmatrix}=\begin{bmatrix} -b-c & b & c \\ -e-f & e &f \\ -h-i & h & i \end{bmatrix}$ Then $b+e+h=0\\c+f+i=0 \\ (-b-c)+(-f-e)+(-h-i)=0\\ \rightarrow b=-e-h\\ c=-f-i\\-b-c=e+f+h+i$ Thus $\begin{bmatrix} e+f+h+i & -e-h & -f-i \\ -e-f & e &f \\ -h-i & h & i \end{bmatrix}$ We can see that every matrix $A \in S$ is a scalar multiple of the matrix $\begin{bmatrix} e+f+h+i & -e-h & -f-i \\ -e-f & e &f \\ -h-i & h & i \end{bmatrix}=e\begin{bmatrix} 1 & -1 & 0\\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}+f\begin{bmatrix} 1 & 0 & -1\\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}+h\begin{bmatrix} 1 & -1 & 0\\ 0 & 0 & 0 \\ -1 & 1 & 0 \end{bmatrix}+i\begin{bmatrix} 1 & 0 & -1\\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ Hence, the set $\{\begin{bmatrix} 1 & -1 & 0\\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix},\begin{bmatrix} 1 & 0 & -1\\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},\begin{bmatrix} 1 & -1 & 0\\ 0 & 0 & 0 \\ -1 & 1 & 0 \end{bmatrix},\begin{bmatrix} 1 & 0 & -1\\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}\}$ spans $S$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.