Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.2 Definition of Vector Spaces - Problems - Page 262: 20

Answer

See below

Work Step by Step

$A1$. Suppose $x,y \in R^+$ Then $x \oplus y=x.y \in R^+$ Hence, $R^+$ is closed under addtion. $A2$. Suppose $x\in R^+, c \in R$ Then $x \odot y=x^c \in R^+$ Hence, $R^+$ is closed under scalar multiplication. $A3$. Suppose $x,y \in R^+$ Then $x \oplus y=x.y=y.x=y \oplus x$ $A4$. Suppose $x,y,z \in R^+$ then $(x \oplus y) \oplus z=(x.y).z=x.(y.z)=x \oplus (y \oplus z)$ $A5$. Suppose $x \in R^+$ then $x \oplus 1=x.1=x$ Hence, $1$ is zero vector $A6$. Suppose $x \in R^+$ then $x \oplus \frac{1}{x}=x.\frac{1}{x}=1$ Hence, additive inverse of $x$ is $\frac{1}{x}$. $A7$. Suppose $x \in R^+$ then $1 \oplus x=x^1=x$ $A8$. Suppose $x \in R^+$ and $r,s \in R^+$ then $(rx) \oplus x=x^{rx}=x^{r(x)}=r \oplus (x^s)=r \odot (s \odot x)$ $A9$. Suppose $x,y \in R^+$ adn $r \in R$ then $r \odot (x \oplus y)=(x \oplus y)^r=x^r.y^r=r \odot x \oplus r \odot y$ $A10$. Suppose $x \in R^+$ and $r,s \in R$ then $(r+s)\odot x=x^{r+s}=x^r.x^s=r \odot x \oplus s \odot x$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.