Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 4 - Vector Spaces - 4.2 Definition of Vector Spaces - Problems - Page 262: 16

Answer

See below

Work Step by Step

General form of vector space $V$ is $A=\begin{bmatrix} a & b \\ c & d \\ e & f \\ g & h \end{bmatrix}$ with $a,b,c,d,e,f,g,h \in R$ Since $\begin{bmatrix} a & b \\ c & d \\ e & f \\ g & h \end{bmatrix}+\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}=\begin{bmatrix} a & b \\ c & d \\ e & f \\ g & h \end{bmatrix}$ we can see that zero vector in $V$ is $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} Hence, additive inverse $-A=\begin{bmatrix} -a & -b \\ -c & -d \\ -e & -f \\ -g & -h \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.