Answer
See below
Work Step by Step
General form of vector space $V$ is $A=\begin{bmatrix}
a & b \\ c & d \\ e & f \\ g & h
\end{bmatrix}$
with $a,b,c,d,e,f,g,h \in R$
Since $\begin{bmatrix}
a & b \\ c & d \\ e & f \\ g & h
\end{bmatrix}+\begin{bmatrix}
0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0
\end{bmatrix}=\begin{bmatrix}
a & b \\ c & d \\ e & f \\ g & h
\end{bmatrix}$
we can see that zero vector in $V$ is $\begin{bmatrix}
0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0
\end{bmatrix}
Hence, additive inverse $-A=\begin{bmatrix}
-a & -b \\ -c & -d \\ -e & -f \\ -g & -h
\end{bmatrix}$