Answer
See below
Work Step by Step
General form of vector space $V$ is $A=\begin{bmatrix}
a_{11} & a_{12} & .. & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ . & . & ... & . \\ a_{m1} & a_{m2} & ... & a_{mn}
\end{bmatrix}$
with $a_{ij} \in R$
we can see that zero vector in $V$ is $\begin{bmatrix}
0 & 0 & ... & 0 \\ 0 & 0 & ... & 0 \\ . & . & ... & . \\ 0 & 0 & ... & 0
\end{bmatrix}$
Hence, additive inverse $-A=\begin{bmatrix}
-a_{11} & -a_{12} & .. & -a_{1n} \\ -a_{21} & -a_{22} & ... & -a_{2n} \\ . & . & ... & . \\ -a_{m1} & -a_{m2} & ... & -a_{mn}
\end{bmatrix}$