Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.9 Chapter Review - Additional Problems - Page 192: 17

Answer

$\int^1_0B(t)dt=\begin{bmatrix} -7 & \frac{1}{3}\\ \frac{11}{2} & \frac{11}{4} \\ \frac{3}{2} & \frac{2}{\pi} \\ e-1&\frac{3}{4} \end{bmatrix}$

Work Step by Step

$\int^1_0B(t)dt$ is the integral of the matrix $B(t)$ $\int^1_0B(t)dt=\begin{bmatrix} \int^1_0 -7 & \int^1_0t^2\\ \int^1_0 (6-t) & \int^1_0 (3t^3+6t^2)\\ \int^1_0(1+t) & \int^1_0 \cos(\frac{\pi t}{2})\\ \int^1_0 e^t & \int^1_0(1-t^3) \end{bmatrix}=\begin{bmatrix} -7 & \frac{1}{3}\\ \frac{11}{2} & \frac{11}{4} \\ \frac{3}{2} & \frac{2}{\pi} \\ e-1&\frac{3}{4} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.