Answer
See below
Work Step by Step
Let $A$ be an $n \times n$ matrix.
a) Let $A$ be in a form $A=[a_{ij}]$, then $(i,j) -$ entry of the matrix $A^2$ is:
$\sum^n_{k=1}a_{ik}a_{kj}$
b) Asssume $A$ is symmetric matrix, then $A=A^T$.
Obtain: $(A^2)^T=(AA)^T=A^TA^T=AA=A^2$
Hence, $A^2$ is symmetric matrix.