College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.4 - Real Zeros of Polynomials - 3.4 Exercises - Page 320: 50

Answer

$x\displaystyle \in\{ -1, 2-\sqrt 2, 2+\sqrt 2, 2\}$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^5-4x^4-x^{3}+10x^{2}+2x-4$ Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm 2, \pm4$ $q:\qquad \pm 1$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 2, \pm 4$ Try for $x=-1:$ $\begin{array}{lllll} \underline{-1}|& 1 & -4 & -1 & 10 & 2& -4\\ & & -1& 5& -4& -6& 4\\ & -- & -- & -- & --\\ & 1 & -5 & 4& 6& -4 & |\underline{0} \end{array}$ $-1$ is a zero, $f(x)=(x+1)(x^4-5x^3+4x^2+6x-4)$ Try for $x=-1$: $\begin{array}{lllll} \underline{-1}|& 1&-5 & 4 & 6 & -4\\ & & -1& 6& -10& 4\\ & -- & -- & -- & --\\ & 1 & -6& 10& -4 & |\underline{0} \end{array}$ $-1$ is a zero, $f(x)=(x+1)^2(x^3-6x^2+10x-4)$ Try $x=2$: $\begin{array}{lllll} \underline{2}|& 1 & -6 & 10 & -4\\ & & 2& -8& 4\\ & -- & -- & -- & --\\ & 1 & -4& 2 & |\underline{0} \end{array}$ $2$ is a zero, $f(x)=(x+1)^2(x-2)(x^2-4x+2)$ Solving for the trinomial, using the quadratic formula for the quadratic equation of $ax^2+bx+c$, $x=\frac{-b\pm \sqrt {b^2-4ac}}{2a}$. in this case, $x^2-4x+2$, $x=\frac{4\pm 2\sqrt 2}{2}=2\pm\sqrt 2$ Therefore, the real zeros of the equations are: $x\displaystyle \in\{ -1, 2-\sqrt 2, 2+\sqrt 2, 2\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.