College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.4 - Real Zeros of Polynomials - 3.4 Exercises - Page 320: 48

Answer

$x\displaystyle \in\left\{ -2, \frac{-1- \sqrt {5}}{2}, \frac{-1+ \sqrt {5}}{2},1\right\}$

Work Step by Step

see The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^4+2x^{3}-2x^{2}-3x+2$ Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm 2$ $q:\qquad \pm 1$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 2$ Try for $x=1:$ $\begin{array}{lllll} \underline{1}|& 1 & 2 & -2 & -3 & 2\\ & & 1 & 3& 1& -2\\ & -- & -- & -- & --\\ & 1 & 3 & 1& -2 & |\underline{0} \end{array}$ $1$ is a zero, $f(x)=(x-1)(x^3+3x^2+x-2)$ Try for $x=-2$: $\begin{array}{lllll} \underline{-2}|& 1 & 3 & 1 & -2\\ & & -2& -2& 2\\ & -- & -- & -- & --\\ & 1 & 1& -1 & |\underline{0} \end{array}$ $-2$ is a zero, $f(x)=(x+2)(x-1)(x^2+x-1)$ Solving for the trinomial, using the quadratic formula for the quadratic equation of $ax^2+bx+c$, $x=\frac{-b\pm \sqrt {b^2-4ac}}{2a}$. in this case, $x^2+x-1$, $x=\frac{-1\pm \sqrt {1^2-4 \times 1\times (-1)}}{2\times 1}=\frac{-1\pm \sqrt {5}}{2}$. Therefore, the real zeros of the equations are: $x\displaystyle \in\left\{ -2, \frac{-1- \sqrt {5}}{2}, \frac{-1+ \sqrt {5}}{2},1\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.