# Chapter 2, Functions - Section 2.6 - Transformations of Functions - 2.6 Exercises - Page 243: 48 The given function can be written as: $y = -\sqrt{x+1}+2$ RECALL: (1) The function $y=f(x-h)$ involves a horizontal shift of $h$ units to the right of the parent function $f(x)$ when $h\gt0$. The function involves a horizontal shift of $|h|$ units to the left when $h \lt0$. (2) The function $y=-f(x)$ involves a reflection about the x-axis of the parent function $f(x)$. (3) The function $y=a\cdot f(x)$ involves a vertical stretch of the parent function $f(x)$ when $a\gt1$, and involves a vertical compression when $0 \lt a \lt 1$. (4) The function $y=f(x)+c$ involves a vertical shift of $c$ units upward of the parent function $f(x)$ when $c \gt 0$. The function will involve a vertical shift of $|c|$ units downward when $c \lt 0$. The parent function of the given function is $f(x)=\sqrt{x}$. The given function can be written $y=-f(x+1)+2$ where $f(x)$ is the parent function. Thus, the graph of the given function involves: (i) a horizontal shift of $1$ unit to the left, (ii) a reflection about the x-axis, (iii) a shift of $2$ units upward of the parent function $f(x)=\sqrt{x}$. Therefore, to graph the given function: (1) Graph the parent function $y=\sqrt{x}$ . (Refer to the red graph in the attached image below) (2) Shift the graph of the parent function 1 unit to the left. (Refer to the orange graph in the attached image below.) (3) Reflect the graph in Step (2) 3 about the x-axis. (Refer to the green graph in the attached image below) (4) Shift the graph in Step (3) 2 units upward. (Refer to the blue graph in the attached image in the answer part above.) 